cmmdc (120; 60) = ? Calculează cel mai mare divizor comun, cmmdc, al celor două numere. Calculator online

cmmdc (120; 60) = ?

Metoda 1. Divizibilitatea numerelor:

Împarte numărul mai mare la numărul mai mic.


Reține că atunci când numerele sunt împărțite, restul este zero:


120 : 60 = 2 + 0


⇒ 120 = 60 × 2


Deci, 120 este divizibil cu 60.


Și 60 este un divizor al lui 120.


De asemenea, cel mai mare divizor al lui 60 este numărul însuși, 60.



Cel mai mare divizor comun,
cmmdc (120; 60) = 60 = 22 × 3 × 5
120 este divizibil cu 60
Derulează în jos pentru a 2-a metodă...

Metoda 2. Descompunerea în factori primi:

Descompunerea în factori primi a unui număr: găsirea numerelor prime care se înmulțesc pentru a obține acel număr.


120 = 23 × 3 × 5
120 nu este un număr prim, ci unul compus.


60 = 22 × 3 × 5
60 nu este un număr prim, ci unul compus.


» Calculator online. Verifică dacă un număr este prim sau nu. Descompunerea în factori primi a numerelor compuse

* Numerele naturale care sunt divizibile doar cu 1 și cu ele însele se numesc numere prime. Un număr prim are exact doi divizori: 1 și el însuși.
* Un număr compus este un număr natural care are cel puțin un alt divizor decât 1 și el însuși.


Calculează cel mai mare divizor comun:

Înmulțește toți factorii primi comuni, la puterile lor cele mai mici (cu exponenții cei mai mici).


Cel mai mare divizor comun,
cmmdc (120; 60) = 22 × 3 × 5 = 60
120 conţine toţi factorii primi ai numărului 60
120 este divizibil cu 60.

De ce este util să calculăm cel mai mare divizor comun?

După ce ați calculat cel mai mare divizor comun al numărătorului și numitorului unei fracții, devine mult mai ușor să simplificați fracția la cea mai simplă formă echivalentă, ireductibilă (cel mai mic numărător și numitor posibil, care sunt numere prime între ele).


Cel mai mare divizor comun, cmmdc. Ce este și cum se calculează.

  • Notă: Descompunerea în factori primi a unui număr: găsirea numerelor prime care se înmulțesc împreună pentru a rezulta acel număr.
  • Să presupunem că numărul "a" se împarte la numărul "t" fără rest.
  • Când ne uităm la descompunerea în factori primi a numerelor "a" și "t", vedem că:
  • 1) toți factorii primi ai lui "t" sunt, de asemenea, factori primi ai lui "a"
  • și
  • 2) exponenții factorilor primi ai lui "t" sunt egali sau mai mici decât exponenții factorilor primi ai lui "a" (vezi * Nota de mai jos)
  • De exemplu, numărul 12 este un divizor al numărului 60:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 60 = 2 × 2 × 3 × 5 = 22 × 3 × 5
  • * Notă: 23 = 2 × 2 × 2 = 8. Spunem că 2 a fost ridicat la puterea a 3-a, sau, mai scurt, spunem: 2 la puterea a 3-a, sau, și mai scurt, 2 la a 3-a. În acest exemplu, 3 este exponentul și 2 este baza. Exponentul indică de câte ori se înmulțește baza cu ea însăși. 23 este puterea și 8 este valoarea puterii.
  • Dacă numărul "t" este un divizor comun al numerelor "a" și "b", atunci:
  • 1) "t" are doar factorii primi care intervin și în descompunerea în factori primi a lui "a" și "b".
  • și
  • 2) fiecare factor prim al lui "t" are cei mai mici exponenți în raport cu factorii primi ai numerelor "a" și "b".
  • De exemplu, numărul 12 este divizorul comun al numerelor 48 și 360. Mai jos este descompunerea lor în factori primi:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Puteți vedea că numărul 12 are doar factorii primi care apar și în descompunerea în factori primi a numerelor 48 și 360.
  • Puteți vedea mai sus că numerele 48 și 360 conțin mai mulți divizori comuni: 2, 3, 4, 6, 8, 12, 24. Dintre aceștia, 24 este cel mai mare divizor comun, cmmdc, al lui 48 și 360.
  • 24 = 2 × 2 × 2 × 3 = 23 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • 24, cel mai mare divizor comun al numerelor 48 și 360, se calculează ca produsul tuturor factorilor primi comuni ai celor două numere, fiecare din ei având cei mai mici exponenți (cele mai mici puteri).
  • Dacă două numere "a" și "b" nu au alt divizor comun decât 1, cmmdc (a, b) = 1, atunci numerele "a" și "b" se numesc numere coprime (sau numere prime între ele, relativ prime).
  • Dacă "a" și "b" nu sunt numere prime între ele, atunci fiecare divizor comun al lui "a" și "b" este un divizor al celui mai mare divizor comun al numerelor "a" și "b".
  • Iată mai jos un exemplu despre cum să calculăm cel mai mare divizor comun, cmmdc, al următoarelor numere:
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • cmmdc (1.260, 3.024, 5.544) = 22 × 32 = 252
  • Și încă un exemplu:
  • 900 = 22 × 32 × 52
  • 270 = 2 × 33 × 5
  • 210 = 2 × 3 × 5 × 7
  • cmmdc (900, 270, 210) = 2 × 3 × 5 = 30
  • Și încă un exemplu:
  • 90 = 2 × 32 × 5
  • 27 = 33
  • 22 = 2 × 11
  • cmmdc (90, 27, 22) = 1 - Cele trei numere nu au factori primi în comun, sunt numere coprime.