Cel mai mic multiplu comun:
cmmmc (17; 15) = 3 × 5 × 17 = 255
Cele două numere nu au factori primi în comun
255 = 17 × 15
Metoda 2. Algoritmul lui Euclid:
1. Calculează cel mai mare divizor comun:
Acest algoritm implică procesul de împărțire a numerelor și calcularea resturilor.
'a' și 'b' sunt cele două numere naturale, 'a' >= 'b'.
Împărțim 'a' la 'b' și obținem restul operației, 'r'.
Dacă 'r' = 0, STOP. 'b' = cmmdc pentru 'a' și 'b'.
Altfel: Înlocuim ('a' cu 'b') și ('b' cu 'r'). Revenim la pasul de mai sus.
Pas 1. Împărțim numărul mai mare la numărul mai mic:
17 : 15 = 1 + 2
Pas 2. Împărțim numărul mai mic la restul operației de mai sus:
15 : 2 = 7 + 1
Pas 3. Împărțim restul de la pasul 1 la restul de la pasul 2:
2 : 1 = 2 + 0
La acest pas, restul este zero, așa că ne oprim:
1 este numărul pe care îl căutăm - ultimul rest diferit de zero.
Acesta este cel mai mare divizor comun.
Cel mai mare divizor comun:
cmmdc (17; 15) = 1
2. Calculează cel mai mic multiplu comun:
Cel mai mic multiplu comun, formula:
cmmmc (a; b) = (a × b) / cmmdc (a; b)
cmmmc (17; 15) =
(17 × 15) / cmmdc (17; 15) =
255 / 1 =
255
Cel mai mic multiplu comun:
cmmmc (17; 15) = 255 = 3 × 5 × 17
De ce e util să calculăm cel mai mic multiplu comun?
Atunci când avem de adunat, de scăzut sau de sortat fracții cu numitori diferiți, pentru a putea lucra cu acele fracții trebuie mai întâi să le aducem la același numitor. O modalitate ușoară este aceea de a calcula cel mai mic multiplu comun al tuturor numitorilor fracțiilor.
Prin definiție, cel mai mic multiplu comun al două numere este cel mai mic număr natural care este: (1) mai mare decât 0 și (2) un multiplu al ambelor numere.