Calculează și numără toți divizorii numărului 0. Calculator online

Toți divizorii numărului 0. Cât de importantă e descompunerea în factori primi a numărului

Zero are un număr infinit de divizori

Zero este divizibil cu orice număr diferit de zero (nu există rest la împărțirea lui zero la aceste numere).


0 nu poate fi descompus în factori primi. 0 nu este nici număr prim, nici compus.

Divizori, divizori comuni, cel mai mare divizor comun, cmmdc

  • Dacă numărul "t" este un divizor al numărului "a" atunci în descompunerea în factori primi ai lui "t" vom întâlni doar factori primi care, de asemenea apar în descompunerea în factori primi a lui "a".
  • Dacă sunt implicați și exponenți, valoarea maximă a unui exponent pentru orice bază a unei puteri care se găsește în descompunerea în factori primi ai lui "t" este cel mult egală cu exponentul aceleiași baze care este implicată și în descompunerea în factori primi ai lui "a".
  • Notă: 23 = 2 × 2 × 2 = 8. Spunem că 2 a fost ridicat la puterea a 3-a, sau, mai scurt, spunem: 2 la puterea a 3-a, sau, și mai scurt, 2 la a 3-a. În acest exemplu, 3 este exponentul și 2 este baza. Exponentul indică de câte ori se înmulțește baza cu ea însăși. 23 este puterea și 8 este valoarea puterii.
  • De exemplu, 12 este un divizor al lui 120 - restul este zero la împărțirea lui 120 la 12.
  • Să ne uităm la descompunerea în factori primi a ambelor numere și să observăm bazele și exponenții care apar în descompunerea în factori primi a ambelor numere:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 conține toți factorii primi ai lui 12, iar toți exponenții bazelor sale sunt mai mari decât cei ai lui 12.
  • Dacă "t" este un divizor comun al lui "a" și "b", atunci descompunerea lui "t" conține doar factorii primi comuni implicați în descompunerea în factori primi atât a lui "a" cât și a lui "b".
  • Dacă sunt implicați exponenți, valoarea maximă a unui exponent pentru orice bază a unei puteri care se găsește în descompunerea în factori primi a lui "t" este cel mult egală cu minimul exponenților pentru aceeași bază care este implicată în descompunerea în factori primi a lui "a" și "b".
  • De exemplu, 12 e divizor comun al numerelor 48 și 360.
  • Restul e zero atunci când împărțim atât 48 cât și 360 ​​la 12.
  • Iată mai jos descompunerea în factori primi a celor trei numere, 12, 48 și 360:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • 48 și 360 au mai mulți divizori: 2, 3, 4, 6, 8, 12, 24. Dintre aceștia, 24 este cel mai mare divizor comun, cmmdc, al numerelor 48 și 360.
  • Cel mai mare divizor comun, cmmdc, a două numere, "a" și "b", este produsul tuturor factorilor primi comuni implicați în descompunerea lui "a" și "b", luați la puterile cele mai mici (cei mai mici exponenți).
  • Pe baza acestei reguli se calculează cel mai mare divizor comun, cmmdc, al mai multor numere, așa cum se poate vedea în exemplul de mai jos...
  • cmmdc (1.260; 3.024; 5.544) = ?
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • Factorii primi comuni sunt:
  • 2 - cel mai mic exponent al său este: min.(2; 3; 4) = 2
  • 3 - cel mai mic exponent al său este: min.(2; 2; 2) = 2
  • cmmdc (1.260; 3.024; 5.544) = 22 × 32 = 252
  • Numere coprime:
  • Dacă două numere "a" și "b" nu au alți divizori comuni decât 1, cmmdc (a; b) = 1, atunci numerele "a" și "b" se numesc prime între ele, sau relativ prime, sau mai scurt, coprime.
  • Divizori ai cmmdc
  • Dacă "a" și "b" nu sunt coprime, atunci fiecare divizor comun al lui "a" și "b" este, de asemenea, un divizor al celui mai mare divizor comun al lui "a" și "b".