Calculați (găsiți) toți divizorii numărului 2.211.300 (divizori proprii, improprii și factorii primii). Calculator online

Toți divizorii numărului 2.211.300

1. Efectuează descompunerea numărului 2.211.300 în factori primi:

Descompunerea în factori primi a unui număr: găsirea numerelor prime care se înmulțesc pentru a obține acel număr.


2.211.300 = 22 × 35 × 52 × 7 × 13
2.211.300 nu este număr prim, ci unul compus.


* Numerele naturale care sunt divizibile doar cu 1 și cu ele însele se numesc numere prime. Un număr prim are exact doi divizori: 1 și numărul în sine.
* Un număr compus este un număr natural care are cel puțin un alt divizor decât 1 și el însuși.


2. Înmulțește factorii primi ai numărului 2.211.300

Înmulțește factorii primi implicați în descompunerea în factori primi a numărului, în toate combinațiile lor unice, care dau rezultate diferite.


Ia în considerare și exponenții acestor factori primi.

De asemenea, adăugă 1 la lista de divizori. Orice număr e divizibil cu 1.


Toți divizorii sunt enumerați mai jos - în ordine crescătoare

Lista de divizori:

nici prim, nici compus = 1
factor prim = 2
factor prim = 3
22 = 4
factor prim = 5
2 × 3 = 6
factor prim = 7
32 = 9
2 × 5 = 10
22 × 3 = 12
factor prim = 13
2 × 7 = 14
3 × 5 = 15
2 × 32 = 18
22 × 5 = 20
3 × 7 = 21
52 = 25
2 × 13 = 26
33 = 27
22 × 7 = 28
2 × 3 × 5 = 30
5 × 7 = 35
22 × 32 = 36
3 × 13 = 39
2 × 3 × 7 = 42
32 × 5 = 45
2 × 52 = 50
22 × 13 = 52
2 × 33 = 54
22 × 3 × 5 = 60
32 × 7 = 63
5 × 13 = 65
2 × 5 × 7 = 70
3 × 52 = 75
2 × 3 × 13 = 78
34 = 81
22 × 3 × 7 = 84
2 × 32 × 5 = 90
7 × 13 = 91
22 × 52 = 100
3 × 5 × 7 = 105
22 × 33 = 108
32 × 13 = 117
2 × 32 × 7 = 126
2 × 5 × 13 = 130
33 × 5 = 135
22 × 5 × 7 = 140
2 × 3 × 52 = 150
22 × 3 × 13 = 156
2 × 34 = 162
52 × 7 = 175
22 × 32 × 5 = 180
2 × 7 × 13 = 182
33 × 7 = 189
3 × 5 × 13 = 195
2 × 3 × 5 × 7 = 210
32 × 52 = 225
2 × 32 × 13 = 234
35 = 243
22 × 32 × 7 = 252
22 × 5 × 13 = 260
2 × 33 × 5 = 270
3 × 7 × 13 = 273
22 × 3 × 52 = 300
32 × 5 × 7 = 315
22 × 34 = 324
52 × 13 = 325
2 × 52 × 7 = 350
33 × 13 = 351
22 × 7 × 13 = 364
2 × 33 × 7 = 378
2 × 3 × 5 × 13 = 390
34 × 5 = 405
22 × 3 × 5 × 7 = 420
2 × 32 × 52 = 450
5 × 7 × 13 = 455
22 × 32 × 13 = 468
2 × 35 = 486
3 × 52 × 7 = 525
22 × 33 × 5 = 540
2 × 3 × 7 × 13 = 546
34 × 7 = 567
32 × 5 × 13 = 585
2 × 32 × 5 × 7 = 630
2 × 52 × 13 = 650
33 × 52 = 675
22 × 52 × 7 = 700
2 × 33 × 13 = 702
22 × 33 × 7 = 756
22 × 3 × 5 × 13 = 780
2 × 34 × 5 = 810
32 × 7 × 13 = 819
22 × 32 × 52 = 900
2 × 5 × 7 × 13 = 910
33 × 5 × 7 = 945
22 × 35 = 972
3 × 52 × 13 = 975
2 × 3 × 52 × 7 = 1.050
34 × 13 = 1.053
22 × 3 × 7 × 13 = 1.092
2 × 34 × 7 = 1.134
2 × 32 × 5 × 13 = 1.170
35 × 5 = 1.215
22 × 32 × 5 × 7 = 1.260
22 × 52 × 13 = 1.300
2 × 33 × 52 = 1.350
3 × 5 × 7 × 13 = 1.365
22 × 33 × 13 = 1.404
Această listă continuă mai jos...

... Această listă continuă de mai sus
32 × 52 × 7 = 1.575
22 × 34 × 5 = 1.620
2 × 32 × 7 × 13 = 1.638
35 × 7 = 1.701
33 × 5 × 13 = 1.755
22 × 5 × 7 × 13 = 1.820
2 × 33 × 5 × 7 = 1.890
2 × 3 × 52 × 13 = 1.950
34 × 52 = 2.025
22 × 3 × 52 × 7 = 2.100
2 × 34 × 13 = 2.106
22 × 34 × 7 = 2.268
52 × 7 × 13 = 2.275
22 × 32 × 5 × 13 = 2.340
2 × 35 × 5 = 2.430
33 × 7 × 13 = 2.457
22 × 33 × 52 = 2.700
2 × 3 × 5 × 7 × 13 = 2.730
34 × 5 × 7 = 2.835
32 × 52 × 13 = 2.925
2 × 32 × 52 × 7 = 3.150
35 × 13 = 3.159
22 × 32 × 7 × 13 = 3.276
2 × 35 × 7 = 3.402
2 × 33 × 5 × 13 = 3.510
22 × 33 × 5 × 7 = 3.780
22 × 3 × 52 × 13 = 3.900
2 × 34 × 52 = 4.050
32 × 5 × 7 × 13 = 4.095
22 × 34 × 13 = 4.212
2 × 52 × 7 × 13 = 4.550
33 × 52 × 7 = 4.725
22 × 35 × 5 = 4.860
2 × 33 × 7 × 13 = 4.914
34 × 5 × 13 = 5.265
22 × 3 × 5 × 7 × 13 = 5.460
2 × 34 × 5 × 7 = 5.670
2 × 32 × 52 × 13 = 5.850
35 × 52 = 6.075
22 × 32 × 52 × 7 = 6.300
2 × 35 × 13 = 6.318
22 × 35 × 7 = 6.804
3 × 52 × 7 × 13 = 6.825
22 × 33 × 5 × 13 = 7.020
34 × 7 × 13 = 7.371
22 × 34 × 52 = 8.100
2 × 32 × 5 × 7 × 13 = 8.190
35 × 5 × 7 = 8.505
33 × 52 × 13 = 8.775
22 × 52 × 7 × 13 = 9.100
2 × 33 × 52 × 7 = 9.450
22 × 33 × 7 × 13 = 9.828
2 × 34 × 5 × 13 = 10.530
22 × 34 × 5 × 7 = 11.340
22 × 32 × 52 × 13 = 11.700
2 × 35 × 52 = 12.150
33 × 5 × 7 × 13 = 12.285
22 × 35 × 13 = 12.636
2 × 3 × 52 × 7 × 13 = 13.650
34 × 52 × 7 = 14.175
2 × 34 × 7 × 13 = 14.742
35 × 5 × 13 = 15.795
22 × 32 × 5 × 7 × 13 = 16.380
2 × 35 × 5 × 7 = 17.010
2 × 33 × 52 × 13 = 17.550
22 × 33 × 52 × 7 = 18.900
32 × 52 × 7 × 13 = 20.475
22 × 34 × 5 × 13 = 21.060
35 × 7 × 13 = 22.113
22 × 35 × 52 = 24.300
2 × 33 × 5 × 7 × 13 = 24.570
34 × 52 × 13 = 26.325
22 × 3 × 52 × 7 × 13 = 27.300
2 × 34 × 52 × 7 = 28.350
22 × 34 × 7 × 13 = 29.484
2 × 35 × 5 × 13 = 31.590
22 × 35 × 5 × 7 = 34.020
22 × 33 × 52 × 13 = 35.100
34 × 5 × 7 × 13 = 36.855
2 × 32 × 52 × 7 × 13 = 40.950
35 × 52 × 7 = 42.525
2 × 35 × 7 × 13 = 44.226
22 × 33 × 5 × 7 × 13 = 49.140
2 × 34 × 52 × 13 = 52.650
22 × 34 × 52 × 7 = 56.700
33 × 52 × 7 × 13 = 61.425
22 × 35 × 5 × 13 = 63.180
2 × 34 × 5 × 7 × 13 = 73.710
35 × 52 × 13 = 78.975
22 × 32 × 52 × 7 × 13 = 81.900
2 × 35 × 52 × 7 = 85.050
22 × 35 × 7 × 13 = 88.452
22 × 34 × 52 × 13 = 105.300
35 × 5 × 7 × 13 = 110.565
2 × 33 × 52 × 7 × 13 = 122.850
22 × 34 × 5 × 7 × 13 = 147.420
2 × 35 × 52 × 13 = 157.950
22 × 35 × 52 × 7 = 170.100
34 × 52 × 7 × 13 = 184.275
2 × 35 × 5 × 7 × 13 = 221.130
22 × 33 × 52 × 7 × 13 = 245.700
22 × 35 × 52 × 13 = 315.900
2 × 34 × 52 × 7 × 13 = 368.550
22 × 35 × 5 × 7 × 13 = 442.260
35 × 52 × 7 × 13 = 552.825
22 × 34 × 52 × 7 × 13 = 737.100
2 × 35 × 52 × 7 × 13 = 1.105.650
22 × 35 × 52 × 7 × 13 = 2.211.300

Răspunsul final:
(derulează mai jos)

2.211.300 are 216 divizori:
1; 2; 3; 4; 5; 6; 7; 9; 10; 12; 13; 14; 15; 18; 20; 21; 25; 26; 27; 28; 30; 35; 36; 39; 42; 45; 50; 52; 54; 60; 63; 65; 70; 75; 78; 81; 84; 90; 91; 100; 105; 108; 117; 126; 130; 135; 140; 150; 156; 162; 175; 180; 182; 189; 195; 210; 225; 234; 243; 252; 260; 270; 273; 300; 315; 324; 325; 350; 351; 364; 378; 390; 405; 420; 450; 455; 468; 486; 525; 540; 546; 567; 585; 630; 650; 675; 700; 702; 756; 780; 810; 819; 900; 910; 945; 972; 975; 1.050; 1.053; 1.092; 1.134; 1.170; 1.215; 1.260; 1.300; 1.350; 1.365; 1.404; 1.575; 1.620; 1.638; 1.701; 1.755; 1.820; 1.890; 1.950; 2.025; 2.100; 2.106; 2.268; 2.275; 2.340; 2.430; 2.457; 2.700; 2.730; 2.835; 2.925; 3.150; 3.159; 3.276; 3.402; 3.510; 3.780; 3.900; 4.050; 4.095; 4.212; 4.550; 4.725; 4.860; 4.914; 5.265; 5.460; 5.670; 5.850; 6.075; 6.300; 6.318; 6.804; 6.825; 7.020; 7.371; 8.100; 8.190; 8.505; 8.775; 9.100; 9.450; 9.828; 10.530; 11.340; 11.700; 12.150; 12.285; 12.636; 13.650; 14.175; 14.742; 15.795; 16.380; 17.010; 17.550; 18.900; 20.475; 21.060; 22.113; 24.300; 24.570; 26.325; 27.300; 28.350; 29.484; 31.590; 34.020; 35.100; 36.855; 40.950; 42.525; 44.226; 49.140; 52.650; 56.700; 61.425; 63.180; 73.710; 78.975; 81.900; 85.050; 88.452; 105.300; 110.565; 122.850; 147.420; 157.950; 170.100; 184.275; 221.130; 245.700; 315.900; 368.550; 442.260; 552.825; 737.100; 1.105.650 și 2.211.300
din care 5 factori primi: 2; 3; 5; 7 și 13
2.211.300 și 1 se numesc divizori improprii, ceilalți sunt divizori proprii.

O modalitate rapidă de a găsi divizorii unui număr este să-l descompuneți în factori primi.


Apoi înmulțiți factorii primi și exponenții lor, dacă există, în toate combinațiile lor diferite.


Divizori, divizori comuni, cel mai mare divizor comun, cmmdc

  • Dacă numărul "t" este un divizor al numărului "a" atunci în descompunerea în factori primi ai lui "t" vom întâlni doar factori primi care, de asemenea apar în descompunerea în factori primi a lui "a".
  • Dacă sunt implicați și exponenți, valoarea maximă a unui exponent pentru orice bază a unei puteri care se găsește în descompunerea în factori primi ai lui "t" este cel mult egală cu exponentul aceleiași baze care este implicată și în descompunerea în factori primi ai lui "a".
  • Notă: 23 = 2 × 2 × 2 = 8. Spunem că 2 a fost ridicat la puterea a 3-a, sau, mai scurt, spunem: 2 la puterea a 3-a, sau, și mai scurt, 2 la a 3-a. În acest exemplu, 3 este exponentul și 2 este baza. Exponentul indică de câte ori se înmulțește baza cu ea însăși. 23 este puterea și 8 este valoarea puterii.
  • De exemplu, 12 este un divizor al lui 120 - restul este zero la împărțirea lui 120 la 12.
  • Să ne uităm la descompunerea în factori primi a ambelor numere și să observăm bazele și exponenții care apar în descompunerea în factori primi a ambelor numere:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 conține toți factorii primi ai lui 12, iar toți exponenții bazelor sale sunt mai mari decât cei ai lui 12.
  • Dacă "t" este un divizor comun al lui "a" și "b", atunci descompunerea lui "t" conține doar factorii primi comuni implicați în descompunerea în factori primi atât a lui "a" cât și a lui "b".
  • Dacă sunt implicați exponenți, valoarea maximă a unui exponent pentru orice bază a unei puteri care se găsește în descompunerea în factori primi a lui "t" este cel mult egală cu minimul exponenților pentru aceeași bază care este implicată în descompunerea în factori primi a lui "a" și "b".
  • De exemplu, 12 e divizor comun al numerelor 48 și 360.
  • Restul e zero atunci când împărțim atât 48 cât și 360 ​​la 12.
  • Iată mai jos descompunerea în factori primi a celor trei numere, 12, 48 și 360:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • 48 și 360 au mai mulți divizori: 2, 3, 4, 6, 8, 12, 24. Dintre aceștia, 24 este cel mai mare divizor comun, cmmdc, al numerelor 48 și 360.
  • Cel mai mare divizor comun, cmmdc, a două numere, "a" și "b", este produsul tuturor factorilor primi comuni implicați în descompunerea lui "a" și "b", luați la puterile cele mai mici (cei mai mici exponenți).
  • Pe baza acestei reguli se calculează cel mai mare divizor comun, cmmdc, al mai multor numere, așa cum se poate vedea în exemplul de mai jos...
  • cmmdc (1.260; 3.024; 5.544) = ?
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • Factorii primi comuni sunt:
  • 2 - cel mai mic exponent al său este: min.(2; 3; 4) = 2
  • 3 - cel mai mic exponent al său este: min.(2; 2; 2) = 2
  • cmmdc (1.260; 3.024; 5.544) = 22 × 32 = 252
  • Numere coprime:
  • Dacă două numere "a" și "b" nu au alți divizori comuni decât 1, cmmdc (a; b) = 1, atunci numerele "a" și "b" se numesc prime între ele, sau relativ prime, sau mai scurt, coprime.
  • Divizori ai cmmdc
  • Dacă "a" și "b" nu sunt coprime, atunci fiecare divizor comun al lui "a" și "b" este, de asemenea, un divizor al celui mai mare divizor comun al lui "a" și "b".