Calculează și numără toți divizorii numărului 501.760.000. Calculator online

Toți divizorii numărului 501.760.000. Cât de importantă e descompunerea în factori primi a numărului

1. Efectuează descompunerea numărului 501.760.000 în factori primi:

Descompunerea în factori primi a unui număr: găsirea numerelor prime care se înmulțesc pentru a obține acel număr.


501.760.000 = 214 × 54 × 72
501.760.000 nu este număr prim, ci unul compus.


* Numerele naturale care sunt divizibile doar cu 1 și cu ele însele se numesc numere prime. Un număr prim are exact doi divizori: 1 și numărul în sine.
* Un număr compus este un număr natural care are cel puțin un alt divizor decât 1 și el însuși.


Cum se află numărul de divizori al unui număr?

Dacă un număr N este descompus în factori primi ca:
N = am × bk × cz
unde a, b, c sunt factorii primi și m, k, z sunt exponenții lor, numerele naturale, ....


Atunci numărul de divizori ai numărului N poate fi calculat astfel:
n = (m + 1) × (k + 1) × (z + 1)


În cazul nostru, numărul de factori este calculat astfel:

n = (14 + 1) × (4 + 1) × (2 + 1) = 15 × 5 × 3 = 225

Dar pentru a calcula efectiv factorii, vezi mai jos...

2. Înmulțește factorii primi ai numărului 501.760.000

Înmulțește factorii primi implicați în descompunerea în factori primi a numărului, în toate combinațiile lor unice, care dau rezultate diferite.


Ia în considerare și exponenții acestor factori primi.

De asemenea, adăugă 1 la lista de divizori. Orice număr e divizibil cu 1.


Toți divizorii sunt enumerați mai jos - în ordine crescătoare

Lista de divizori:

nici prim, nici compus = 1
factor prim = 2
22 = 4
factor prim = 5
factor prim = 7
23 = 8
2 × 5 = 10
2 × 7 = 14
24 = 16
22 × 5 = 20
52 = 25
22 × 7 = 28
25 = 32
5 × 7 = 35
23 × 5 = 40
72 = 49
2 × 52 = 50
23 × 7 = 56
26 = 64
2 × 5 × 7 = 70
24 × 5 = 80
2 × 72 = 98
22 × 52 = 100
24 × 7 = 112
53 = 125
27 = 128
22 × 5 × 7 = 140
25 × 5 = 160
52 × 7 = 175
22 × 72 = 196
23 × 52 = 200
25 × 7 = 224
5 × 72 = 245
2 × 53 = 250
28 = 256
23 × 5 × 7 = 280
26 × 5 = 320
2 × 52 × 7 = 350
23 × 72 = 392
24 × 52 = 400
26 × 7 = 448
2 × 5 × 72 = 490
22 × 53 = 500
29 = 512
24 × 5 × 7 = 560
54 = 625
27 × 5 = 640
22 × 52 × 7 = 700
24 × 72 = 784
25 × 52 = 800
53 × 7 = 875
27 × 7 = 896
22 × 5 × 72 = 980
23 × 53 = 1.000
210 = 1.024
25 × 5 × 7 = 1.120
52 × 72 = 1.225
2 × 54 = 1.250
28 × 5 = 1.280
23 × 52 × 7 = 1.400
25 × 72 = 1.568
26 × 52 = 1.600
2 × 53 × 7 = 1.750
28 × 7 = 1.792
23 × 5 × 72 = 1.960
24 × 53 = 2.000
211 = 2.048
26 × 5 × 7 = 2.240
2 × 52 × 72 = 2.450
22 × 54 = 2.500
29 × 5 = 2.560
24 × 52 × 7 = 2.800
26 × 72 = 3.136
27 × 52 = 3.200
22 × 53 × 7 = 3.500
29 × 7 = 3.584
24 × 5 × 72 = 3.920
25 × 53 = 4.000
212 = 4.096
54 × 7 = 4.375
27 × 5 × 7 = 4.480
22 × 52 × 72 = 4.900
23 × 54 = 5.000
210 × 5 = 5.120
25 × 52 × 7 = 5.600
53 × 72 = 6.125
27 × 72 = 6.272
28 × 52 = 6.400
23 × 53 × 7 = 7.000
210 × 7 = 7.168
25 × 5 × 72 = 7.840
26 × 53 = 8.000
213 = 8.192
2 × 54 × 7 = 8.750
28 × 5 × 7 = 8.960
23 × 52 × 72 = 9.800
24 × 54 = 10.000
211 × 5 = 10.240
26 × 52 × 7 = 11.200
2 × 53 × 72 = 12.250
28 × 72 = 12.544
29 × 52 = 12.800
24 × 53 × 7 = 14.000
211 × 7 = 14.336
26 × 5 × 72 = 15.680
27 × 53 = 16.000
214 = 16.384
22 × 54 × 7 = 17.500
29 × 5 × 7 = 17.920
24 × 52 × 72 = 19.600
25 × 54 = 20.000
212 × 5 = 20.480
Această listă continuă mai jos...

... Această listă continuă de mai sus
27 × 52 × 7 = 22.400
22 × 53 × 72 = 24.500
29 × 72 = 25.088
210 × 52 = 25.600
25 × 53 × 7 = 28.000
212 × 7 = 28.672
54 × 72 = 30.625
27 × 5 × 72 = 31.360
28 × 53 = 32.000
23 × 54 × 7 = 35.000
210 × 5 × 7 = 35.840
25 × 52 × 72 = 39.200
26 × 54 = 40.000
213 × 5 = 40.960
28 × 52 × 7 = 44.800
23 × 53 × 72 = 49.000
210 × 72 = 50.176
211 × 52 = 51.200
26 × 53 × 7 = 56.000
213 × 7 = 57.344
2 × 54 × 72 = 61.250
28 × 5 × 72 = 62.720
29 × 53 = 64.000
24 × 54 × 7 = 70.000
211 × 5 × 7 = 71.680
26 × 52 × 72 = 78.400
27 × 54 = 80.000
214 × 5 = 81.920
29 × 52 × 7 = 89.600
24 × 53 × 72 = 98.000
211 × 72 = 100.352
212 × 52 = 102.400
27 × 53 × 7 = 112.000
214 × 7 = 114.688
22 × 54 × 72 = 122.500
29 × 5 × 72 = 125.440
210 × 53 = 128.000
25 × 54 × 7 = 140.000
212 × 5 × 7 = 143.360
27 × 52 × 72 = 156.800
28 × 54 = 160.000
210 × 52 × 7 = 179.200
25 × 53 × 72 = 196.000
212 × 72 = 200.704
213 × 52 = 204.800
28 × 53 × 7 = 224.000
23 × 54 × 72 = 245.000
210 × 5 × 72 = 250.880
211 × 53 = 256.000
26 × 54 × 7 = 280.000
213 × 5 × 7 = 286.720
28 × 52 × 72 = 313.600
29 × 54 = 320.000
211 × 52 × 7 = 358.400
26 × 53 × 72 = 392.000
213 × 72 = 401.408
214 × 52 = 409.600
29 × 53 × 7 = 448.000
24 × 54 × 72 = 490.000
211 × 5 × 72 = 501.760
212 × 53 = 512.000
27 × 54 × 7 = 560.000
214 × 5 × 7 = 573.440
29 × 52 × 72 = 627.200
210 × 54 = 640.000
212 × 52 × 7 = 716.800
27 × 53 × 72 = 784.000
214 × 72 = 802.816
210 × 53 × 7 = 896.000
25 × 54 × 72 = 980.000
212 × 5 × 72 = 1.003.520
213 × 53 = 1.024.000
28 × 54 × 7 = 1.120.000
210 × 52 × 72 = 1.254.400
211 × 54 = 1.280.000
213 × 52 × 7 = 1.433.600
28 × 53 × 72 = 1.568.000
211 × 53 × 7 = 1.792.000
26 × 54 × 72 = 1.960.000
213 × 5 × 72 = 2.007.040
214 × 53 = 2.048.000
29 × 54 × 7 = 2.240.000
211 × 52 × 72 = 2.508.800
212 × 54 = 2.560.000
214 × 52 × 7 = 2.867.200
29 × 53 × 72 = 3.136.000
212 × 53 × 7 = 3.584.000
27 × 54 × 72 = 3.920.000
214 × 5 × 72 = 4.014.080
210 × 54 × 7 = 4.480.000
212 × 52 × 72 = 5.017.600
213 × 54 = 5.120.000
210 × 53 × 72 = 6.272.000
213 × 53 × 7 = 7.168.000
28 × 54 × 72 = 7.840.000
211 × 54 × 7 = 8.960.000
213 × 52 × 72 = 10.035.200
214 × 54 = 10.240.000
211 × 53 × 72 = 12.544.000
214 × 53 × 7 = 14.336.000
29 × 54 × 72 = 15.680.000
212 × 54 × 7 = 17.920.000
214 × 52 × 72 = 20.070.400
212 × 53 × 72 = 25.088.000
210 × 54 × 72 = 31.360.000
213 × 54 × 7 = 35.840.000
213 × 53 × 72 = 50.176.000
211 × 54 × 72 = 62.720.000
214 × 54 × 7 = 71.680.000
214 × 53 × 72 = 100.352.000
212 × 54 × 72 = 125.440.000
213 × 54 × 72 = 250.880.000
214 × 54 × 72 = 501.760.000

Răspunsul final:
(derulează mai jos)

501.760.000 are 225 divizori:
1; 2; 4; 5; 7; 8; 10; 14; 16; 20; 25; 28; 32; 35; 40; 49; 50; 56; 64; 70; 80; 98; 100; 112; 125; 128; 140; 160; 175; 196; 200; 224; 245; 250; 256; 280; 320; 350; 392; 400; 448; 490; 500; 512; 560; 625; 640; 700; 784; 800; 875; 896; 980; 1.000; 1.024; 1.120; 1.225; 1.250; 1.280; 1.400; 1.568; 1.600; 1.750; 1.792; 1.960; 2.000; 2.048; 2.240; 2.450; 2.500; 2.560; 2.800; 3.136; 3.200; 3.500; 3.584; 3.920; 4.000; 4.096; 4.375; 4.480; 4.900; 5.000; 5.120; 5.600; 6.125; 6.272; 6.400; 7.000; 7.168; 7.840; 8.000; 8.192; 8.750; 8.960; 9.800; 10.000; 10.240; 11.200; 12.250; 12.544; 12.800; 14.000; 14.336; 15.680; 16.000; 16.384; 17.500; 17.920; 19.600; 20.000; 20.480; 22.400; 24.500; 25.088; 25.600; 28.000; 28.672; 30.625; 31.360; 32.000; 35.000; 35.840; 39.200; 40.000; 40.960; 44.800; 49.000; 50.176; 51.200; 56.000; 57.344; 61.250; 62.720; 64.000; 70.000; 71.680; 78.400; 80.000; 81.920; 89.600; 98.000; 100.352; 102.400; 112.000; 114.688; 122.500; 125.440; 128.000; 140.000; 143.360; 156.800; 160.000; 179.200; 196.000; 200.704; 204.800; 224.000; 245.000; 250.880; 256.000; 280.000; 286.720; 313.600; 320.000; 358.400; 392.000; 401.408; 409.600; 448.000; 490.000; 501.760; 512.000; 560.000; 573.440; 627.200; 640.000; 716.800; 784.000; 802.816; 896.000; 980.000; 1.003.520; 1.024.000; 1.120.000; 1.254.400; 1.280.000; 1.433.600; 1.568.000; 1.792.000; 1.960.000; 2.007.040; 2.048.000; 2.240.000; 2.508.800; 2.560.000; 2.867.200; 3.136.000; 3.584.000; 3.920.000; 4.014.080; 4.480.000; 5.017.600; 5.120.000; 6.272.000; 7.168.000; 7.840.000; 8.960.000; 10.035.200; 10.240.000; 12.544.000; 14.336.000; 15.680.000; 17.920.000; 20.070.400; 25.088.000; 31.360.000; 35.840.000; 50.176.000; 62.720.000; 71.680.000; 100.352.000; 125.440.000; 250.880.000 și 501.760.000
din care 3 factori primi: 2; 5 și 7
501.760.000 și 1 se numesc divizori improprii, ceilalți sunt divizori proprii.

O modalitate rapidă de a găsi divizorii unui număr este să-l descompuneți în factori primi.


Apoi înmulțiți factorii primi și exponenții lor, dacă există, în toate combinațiile lor diferite.


Divizori, divizori comuni, cel mai mare divizor comun, cmmdc

  • Dacă numărul "t" este un divizor al numărului "a" atunci în descompunerea în factori primi ai lui "t" vom întâlni doar factori primi care, de asemenea apar în descompunerea în factori primi a lui "a".
  • Dacă sunt implicați și exponenți, valoarea maximă a unui exponent pentru orice bază a unei puteri care se găsește în descompunerea în factori primi ai lui "t" este cel mult egală cu exponentul aceleiași baze care este implicată și în descompunerea în factori primi ai lui "a".
  • Notă: 23 = 2 × 2 × 2 = 8. Spunem că 2 a fost ridicat la puterea a 3-a, sau, mai scurt, spunem: 2 la puterea a 3-a, sau, și mai scurt, 2 la a 3-a. În acest exemplu, 3 este exponentul și 2 este baza. Exponentul indică de câte ori se înmulțește baza cu ea însăși. 23 este puterea și 8 este valoarea puterii.
  • De exemplu, 12 este un divizor al lui 120 - restul este zero la împărțirea lui 120 la 12.
  • Să ne uităm la descompunerea în factori primi a ambelor numere și să observăm bazele și exponenții care apar în descompunerea în factori primi a ambelor numere:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 conține toți factorii primi ai lui 12, iar toți exponenții bazelor sale sunt mai mari decât cei ai lui 12.
  • Dacă "t" este un divizor comun al lui "a" și "b", atunci descompunerea lui "t" conține doar factorii primi comuni implicați în descompunerea în factori primi atât a lui "a" cât și a lui "b".
  • Dacă sunt implicați exponenți, valoarea maximă a unui exponent pentru orice bază a unei puteri care se găsește în descompunerea în factori primi a lui "t" este cel mult egală cu minimul exponenților pentru aceeași bază care este implicată în descompunerea în factori primi a lui "a" și "b".
  • De exemplu, 12 e divizor comun al numerelor 48 și 360.
  • Restul e zero atunci când împărțim atât 48 cât și 360 ​​la 12.
  • Iată mai jos descompunerea în factori primi a celor trei numere, 12, 48 și 360:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • 48 și 360 au mai mulți divizori: 2, 3, 4, 6, 8, 12, 24. Dintre aceștia, 24 este cel mai mare divizor comun, cmmdc, al numerelor 48 și 360.
  • Cel mai mare divizor comun, cmmdc, a două numere, "a" și "b", este produsul tuturor factorilor primi comuni implicați în descompunerea lui "a" și "b", luați la puterile cele mai mici (cei mai mici exponenți).
  • Pe baza acestei reguli se calculează cel mai mare divizor comun, cmmdc, al mai multor numere, așa cum se poate vedea în exemplul de mai jos...
  • cmmdc (1.260; 3.024; 5.544) = ?
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • Factorii primi comuni sunt:
  • 2 - cel mai mic exponent al său este: min.(2; 3; 4) = 2
  • 3 - cel mai mic exponent al său este: min.(2; 2; 2) = 2
  • cmmdc (1.260; 3.024; 5.544) = 22 × 32 = 252
  • Numere coprime:
  • Dacă două numere "a" și "b" nu au alți divizori comuni decât 1, cmmdc (a; b) = 1, atunci numerele "a" și "b" se numesc prime între ele, sau relativ prime, sau mai scurt, coprime.
  • Divizori ai cmmdc
  • Dacă "a" și "b" nu sunt coprime, atunci fiecare divizor comun al lui "a" și "b" este, de asemenea, un divizor al celui mai mare divizor comun al lui "a" și "b".