771 și 63 nu sunt coprime... dacă:
- Dacă există cel puțin un număr diferit de 1 la care cele două se împart fără rest. Sau...
- Sau, cu alte cuvinte, dacă cel mai mare divizor comun, cmmdc, al acestora, nu este 1.
Calculează cel mai mare divizor comun, cmmdc, al numerelor
Metoda 1. Descompunerea în factori primi:
Descompunerea în factori primi a unui număr: găsirea numerelor prime care se înmulțesc pentru a obține acel număr.
771 = 3 × 257
771 nu este număr prim, este compus.
63 = 32 × 7
63 nu este număr prim, este compus.
- Numerele care sunt divizibile doar cu 1 și cu ele însele se numesc numere prime. Un număr prim are doar doi divizori: 1 și el însuși.
- Un număr compus este un număr natural care are cel puțin un alt divizor decât 1 și el însuși.
Calculează cel mai mare divizor comun, cmmdc:
Înmulțește toți factorii primi comuni ai celor două numere, la cele mai mici puteri (cu cei mai mici exponenți).
Pas 1. Împărțim numărul mai mare la numărul mai mic:
771 : 63 = 12 + 15
Pas 2. Împărțim numărul mai mic la restul operației de mai sus:
63 : 15 = 4 + 3
Pas 3. Împărțim restul de la pasul 1 la restul de la pasul 2:
15 : 3 = 5 + 0
La acest pas, restul este zero, așa că ne oprim:
3 este numărul pe care îl căutăm - ultimul rest diferit de zero.
Acesta este cel mai mare divizor comun.
cmmdc (771; 63) = 3 ≠ 1
Sunt 771 și 63 numere prime între ele (coprime, relativ prime)? Nu.
cmmdc (63; 771) = 3 ≠ 1