1. Efectuează descompunerea numărului 360.000.000 în factori primi:
Descompunerea în factori primi a unui număr: găsirea numerelor prime care se înmulțesc pentru a obține acel număr.
360.000.000 = 29 × 32 × 57
360.000.000 nu este număr prim, ci unul compus.
- Numerele naturale care sunt divizibile doar cu 1 și cu ele însele se numesc numere prime. Un număr prim are exact doi divizori: 1 și el însuși.
- Exemple de nr. prime: 2 (divizori: 1, 2), 3 (divizori: 1, 3), 5 (divizori: 1, 5), 7 (divizori: 1, 7), 11 (divizori: 1, 11), 13 (divizori: 1, 13), ...
- Un număr compus este un număr natural care are cel puțin un alt divizor decât 1 și el însuși. Deci nu este nici număr prim și nici 1.
- Exemple de nr. compuse: 4 (are 3 divizori: 1, 2, 4), 6 (are 4 divizori: 1, 2, 3, 6), 8 (are 4 divizori: 1, 2, 4, 8), 9 (are 3 divizori: 1, 3, 9), 10 (are 4 divizori: 1, 2, 5, 10), 12 (are 6 divizori: 1, 2, 3, 4, 6, 12), ...
Cum se află numărul de divizori al unui număr?
- Dacă un număr N este descompus în factori primi ca:
N = am × bk × cz
unde a, b, c sunt factorii primi și m, k, z sunt exponenții lor, numere naturale, .... - ...
- Atunci numărul de divizori ai numărului N poate fi calculat astfel:
n = (m + 1) × (k + 1) × (z + 1) - ...
- În cazul nostru, numărul de factori este calculat astfel:
- n = (9 + 1) × (2 + 1) × (7 + 1) = 10 × 3 × 8 = 240
Dar pentru a calcula efectiv factorii, vezi mai jos...
2. Înmulțește factorii primi ai numărului 360.000.000
- Înmulțește factorii primi implicați în descompunerea în factori primi a numărului, în toate combinațiile lor unice, care dau rezultate diferite.
- Ia în considerare și exponenții acestor factori primi.
- De asemenea, adăugă 1 la lista de divizori. Orice număr e divizibil cu 1.
Toți divizorii sunt enumerați mai jos - în ordine crescătoare
Lista de divizori:
Numerele diferite de 1 și care nu sunt factori primi, sunt divizori compuși.